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LETTER TO THE EDITOR 

Canalized states in a two-dimensional quantum model of thin 
films 

N Markovska, J Pop-Jordanov and E A Solov'evt 
Macedonian Academy of Sciences and Am. PO Box 428,910do Skopje. Macedonia 

Received 4 January 1995 

Abstract. In the two-dimensional quantum model defined by Hamiltonian A(x. y )  = - fAs,y  i- 
(a + Amsy)[b(x - n )  + S ( x  i- a)] we revealed a particular solution with poiitive energy 
exponentially deereasing a 1x1 + m in spite of the tulineliing effect. ?he existen? of these 
canalized states cannot be explained in terms of one-dimensional quantum theory and must be 
referred to as m ingenious interaction between different degrees o i  freedom. 

' 

We are considering the two-dimensional problem defined by Hamiltonim~(atomic units are 
used throughout): 

This Hamiltonian models the particle in a two-layer thin film of thickness 2a with Z n  lattice 
period (see figure 1). Recently the quantum treatment of such a system, has become topical 
owing to the achievements in understanding the physics of nanocrystalline solar cells [I]. 

Figure 1. The panern of the two-dimensional thin film. 

t Permanent address: Depariment of Theoretical Physics, Institute of Physics, St Petersburg University. 198904 
St Petenburg, Russia. 
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E02 Letter to the Editor 

The wavefunction of Hamiltonian (1) satisfies the two-dimensional Schriidinger equation 
for a free particle: 

everywhere except at the points x = i a .  The presence of the &barrier at x = a leads to 
the well known matching condition [2]; 

@(x3 Y)lx=u+0 = @(xs Y)lx=0-0 ( 3 4  

The same condition holds at x = -a. However, owing to the symmetry of the Hamiltonian 
H ( x ,  y) = H(-x, y) we can choose the wavefunction in symmetric or antisymmehic form: 
q ( x ,  y) = &@(-x, y). and the problem is reduced to the half-plane x 2 0. 

In this problem the boundary condition has a non-standard form of a combination of 
boundary conditions from scattering and solid-state theory. Namely, the scattering boundary 
condition for the x coordinate 131: 

Sh. = e’e@out (4) 

@ ( x ,  y + ZZ) = e”’”q(x, y) 

and the Bloch condition for the y coordinate [2]: 

(5) 

where .? is the S-matrix, B is the scattering phase and p is the quasi-momentum. Therefore, 
the general solution can be chosen as an eigenfunction of ‘the S-matrix with respect to the 
x axis with a fixed quasi-momentum along the y axis. The latter entails seeking @ as a 
Fourier series with respect to the y coordinate: 

where q. = J(p + n)2 - 2E,  k,, = J2E - (p + n)2, I = [-p -’ mi and m = 
[-p + &%I. The upper circular and hyperbolic functions in equation (6a) pertain to the 
solutions that are symmetric in the x coordinate, the lower to the antisymmetric solutions. 

Obviously, wavefunction (6) satisfies Schrodinger equation (2) and boundary conditions 
(4), (5). The coefficients of expansion in equation (6) and scattering phase B ( p )  are 
determined from matching condition (3) which takes the form of three-term recurrence 
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relations for coefficients d, (see the appendix). These recurrence relations have two linearly 
independent solutions. The physical solution h a s  to decrease as n -+ iw. This type of 
solution has asymptotics: 

The requirement for the decrease in the coefficients d, on both sides (n  + -CO and 
n + fw) determines B = B(p). The alternative solutions increase at least on one side 
with asymptotics 

so that for them the series in (6) diverge. 

solution of unusual type: 
On examining the complete set ,of wavefunctions (6) we have revealed a particular 

m 
W.Y) =~Cd,exp[-q,lxI+i(p+n)~l . .  1x1 >a. (9) 

n=L 

The surprising property of these states is their location in the vicinity of the y axis. We 
have to emphasize that these canalized states occur above the boundary of 'the continuous 
spectrum ( E  t 0) and wavefunction (6a) contains a component with positive energy with 
respect to the x coordinate. This is the way in which one could expect the particle to 
propagate in all directions due to the tunnelling effect. Thus the existence of canalized 
states cannot be explained in the framework of onedimensional quantum theory and must 
be referred to an ingenious interaction between different degrees of freedom. 

It follows from' equation (AZ) that canalized states exist only with the additional 
restriction: 

which provides the connection between ko and a: koa = ( j  + 1). for the symmetric and 
koa =. jn for the antisymmetric case, where j is integer. Consequently, the condition 
q;, = (p  + 1)2 - 2E > O~restricts the quasi-momentum region where this type of state 
exists: 

for symmetric states and 
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for antisymmetric states. 

transformation: 
To prove the existence of canalized states (9) let us introduce the following 

D,, = C. ( coshq,a) = d, exp(-q.a). sinhq,a 

Using this transformation, the recurrence relations for the coefficients of the special kind of 
solution wit1 be 

The coefficient CO is determined from equation (A.7) which takes the form 

a 

Figure 2 Continued fraction (16) as a function: (a) e (A = 5, a = 5, p = 2.5 and j = 3); and 
(b)  p = 2.5 (e = 5,  A = 5. tt = 5, and j = 3). The mow indicates the root corresponding to 
the quantum state in figure 3. 

Relations (13) can be rewritten in the form of an eigenvalue problem with respect to 
parameter a: 

A D j  = ajDj.  (15) 

where 

-fh 0 
pz -$A 1 1::) 

0 -;A 83 -?A ... ’ 
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Figure 3. The space distribution of probnbility density W ( x ,  y )  for a canalized state at a = 5, 
A = 5. n = 5. p = 2.5 and j = 3. 

This approach is an analogue of the Sturmian representation for hydrogen where instead 
of the energy the charge of the nucleus is quantized [4]. The operator A is Hermitian 
and well-defined in Hilbert space. Therefore the eigenvalue problem has an infinite set 
of solutions with real eigenvalues a. The numerical procedure for finding the eigenvalues, 
of threediagonal matrix A can be reduced to the calculation of the zeros of the related 
continued fraction 

Figure 2(a) shows A as a function of 01 at a = 5, A = 5, p = 2.5 and j = 3. From 
figure 2(a) one can see that the pIot has a tangent-like form with an infinite number of 
roots a, on the right-hand side. Figure 2(b) illustrates the dependence of A on the quasi- 
momentum at fixed values of the parameters determining Hamiltonian (I). The density of ~ 

probability W ( x ,  y) = I$(x, y)lz corresponding to the solution indicated in figure 2 by the 
arrow is shown in figure 3. 

Obviously, the phenomenon considered here is not only a particular feature of the given 
model but should also exist in three-dimensional many-layer problems with a more realistic 
description of the layers. Similar (from the mathematical point of view) discrete states with 
non-standard boundary properties have been revealed in the one-dimensional non-stationary 
Schrodinger equation [6], which models the multi-photon ionization of an atom in a strong 
laser field. 

This work was supported by the Macedonian Academy of Sciences and Arts under Grant 
09-548/1. One af us (JP-J) appreciated stimulating discussions with Professor M Gretzel. 

Appendix 

Substituting wavefunction (6) into condition of smoothness (3a) we obtain the relation 
between the coefficients in the interior (1x1 -= a)  and exterior (1x1 > a )  regions: 
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The condition for the jump in the first derivative (3b) in representation (6) transforms into 
a threeterm recurrent relation for coefficients dn: 

(i) €or n < I and n z m + 1 

4exp(-qna)(Bn - 4 = fhdn+l exp(-q,+d -t & - I  exp(-q.-la) (A31 

(ii) for I + 1 < n e m 

d,(B -a) sinp, = $Adn+[ sinsn+1 + &ld,-l sinp,-i (-44) 

where y,, = k.a + 0 and 

(as before the upper and lower functions in o,, correspond to symmehic and antisymmetric 
states, respectively). The relations in the vicinity of the transitional indexes n = 1 and 
n = m a r e :  

4 exp(-w)(h - 01) = $hdj+i sin sj+~ + lhdl-I exp(-qI-la) 

di+iCg,+i -01) sinpj+~ = fhd j+~s inp j+~  -I- fh&exp(-q~a) 

& ( B m  -01) sin!& = ~hd,+i exp(-q,+la) + $hd,-l sinsm-] 

(A51 

(A6) 

(A71 

(As) 

1 

I exp(-q,+la)(p,+I - 01) = ~hd,+Zexp(-q,+zn) + fhd, siny,. 

References 

[I] O'Reilgan B and G m e e l  M 1991 Nature 353 737;Special Gnetzel Cell issue 1994 SolorEnnergy Materials 

[Z] Messiah A I970 Qoanlum Mechanics vols I, I1 (Amsterdam Nonh-Holland) 
[3] Newlon R G 1966 Scatterinfi Tkory of Waves and Particles (New York: McGraw-Hill) 
[4] Fock V A 1976 FundamenraLr oj QumlUm Mechmim (Moscow: Nauka) (in Russian) 
[5] Jones W B and Thron W J 1980 Continued Frrrction?. Aulytic T k o r y  and A/plicalionr (Reading, MA 

[6] Kawnskii A K, Osrrovskii V N and Solov'ev E A 1976 S w .  Phys.-JETP43 254 

and Solar CelL; VOI 32 (Amsterdam: Elrevier) 

Addison- Weslcy) 


